
ARRA – Analysis für Realistische und Relevante Anwendungen

# **ARRA**

# Konzept zu einem Analysisunterricht für Realistische und Relevante Anwendungen



Konzeptentwurf zur Funktionenlehre und Analysis unter dem Schwerpunkt Anwendungs- und Handlungsorientierung

### Inhaltsübersicht

| Vorweg                                                                                       | 4               |
|----------------------------------------------------------------------------------------------|-----------------|
| Die Klausur- oder Abituraufgabe                                                              | 4               |
| Kasten 1: Standardaufgabe                                                                    | 4               |
| Kasten 3: Meadows-Aufgabe                                                                    | 5               |
| Das Oberstufensystem in Nordrhein-Westfalen<br>Kasten 2: Oberstufe Mathematik NRW            | <b>6</b>        |
| Kurskonzept 11.1: Denken in Funktionen                                                       | 7               |
| Funktioneneinführung                                                                         | 7               |
| Kasten 4: Lückenspringer                                                                     | 7               |
| Kasten 5: "Funktionen" in der Physik  Lineare Funktion                                       | 9<br><b>10</b>  |
| Kasten 6: Zwischenpreise                                                                     | 10              |
| Kasten 7: Lineare Interpolationen                                                            | 11              |
| Polynome zweiten und dritten Grades – Inter- und Extrapolationen                             | 12              |
| Kasten 8: Vorgehen bei einer Funktionsbestimmung aus Punktkoordinaten                        | 13              |
| Kasten 9: Überblick<br>Kasten 10: Klausur zur Erdgas-Bohrtiefe                               | 13<br>14        |
| Kasten 11: Klausurlösung                                                                     | 16              |
| Exponentialfunktion – Prognosen                                                              | 17              |
| Kasten 12: Prognosen-Ankündigung                                                             | 18              |
| Kasten 13: Prognosen-Überblick                                                               | 19              |
| Kasten 14: Klausuraufgabe Kasten 15: Funktion von Prognosen                                  | 20<br>20        |
| Kasten 16: "Abschluss"-Qualifikation                                                         | 21              |
| Kasten 17: Exemplarische Bearbeitung                                                         | 21              |
| Kurskonzept 11.2: Analysis I                                                                 | 22              |
| Denken in Änderungen                                                                         | 23              |
| Kasten 18: Parabelkirche                                                                     | 24              |
| Kasten 19: Differenzen- und Differenzialquotient, Beispiele                                  | 25              |
| Ableitungsfunktionen Kasten 20: Olympisches "Parabel"-Feuer                                  | <b>26</b><br>26 |
| Kasten 21: Klausuraufgabe                                                                    | 27              |
| Kasten 22: Sklavensprache                                                                    | 27              |
| Extremwertprobleme                                                                           | 28              |
| Kasten 23: Streichholzschachteln Kasten 24: Vorgehen bei einer Extremwertproblem-Bearbeitung | 28<br>28        |
| Kasten 25: Goldgräber                                                                        | 29              |
| Kasten 26: Strahlengrenzwert                                                                 | 30              |
| Kasten 27: Postangebote                                                                      | 31              |
| Kasten 28: Hermann und Dorothea                                                              | 32              |
| Kurvendiskussion Kasten 29: Folgerungen aus f'(x)                                            | <b>33</b><br>33 |
| Kasten 30: Vorgehen bei der Bearbeitung gebrochen-rationaler Funktionen                      | 34              |
| Kasten 31: Konkurrenzfähigkeit der Bahn                                                      | 35              |
| Kurskonzept 12.1: Analysis II                                                                | 36              |
| Funktionsbestimmung                                                                          | 36              |
| Kasten 32: Autobahnkreuze                                                                    | 36              |
| Kasten 33: Abituraufgabe                                                                     | 37              |
| Integralrechnung Kasten 34: Einkommensteuerplan 1999                                         | <b>38</b><br>38 |
| Kasten 35: Klausuraufgabe                                                                    | 39              |
| Kasten 36: Skizze zu d                                                                       | 39              |
| Exponential- und Logarithmus-Funktion                                                        | 40              |

| Kasten 37: die Grenzen des Wachstums                  | 40 |
|-------------------------------------------------------|----|
| Kasten 38: Eigenschaft der exp-Funktion               | 41 |
| Kasten 39: gemessener und wahrgenommener Lärm         | 41 |
| Kasten 40: Fluglärmgesetz                             | 42 |
| Rotationskörper                                       | 43 |
| Kasten 41: Glockenherstellung                         | 43 |
| Kasten 42: Das Computer-Ei                            | 44 |
| Näherungen und weitere Anwendungen                    | 45 |
| Kasten 43: Arbeitsplan zur Kurvenlängenbestimmung     | 45 |
| Kasten 44: Regel von Guldin                           | 46 |
| Im Nachhinein                                         | 47 |
| Lesehinweise                                          | 47 |
| Was u. a. noch zu bedenken ist                        | 47 |
| Was fehlt                                             | 47 |
| Literatur und Bezugsquelle; MUED                      | 48 |
| MUED-Broschüren zur Funktionenlehre und Analysis      | 49 |
| ·                                                     |    |
| Initiative zur Verbesserung des Mathematikunterrichts | 51 |
| Die MUED                                              | 53 |

**ARRA** 

Preis: 12,50 €

ISBN 978-3-930197-57-6

Copyright bei den Autor/innen

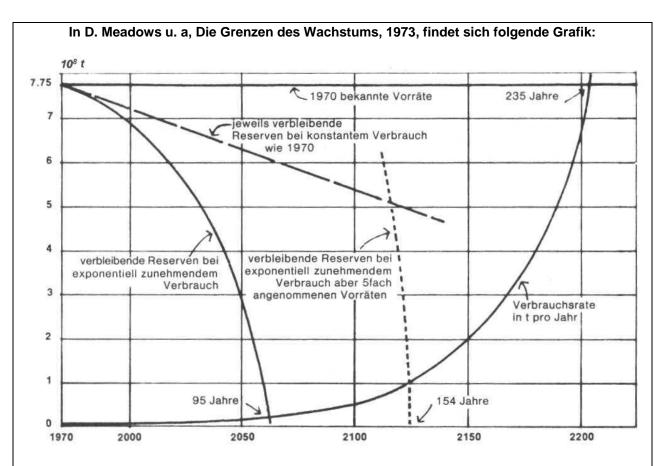
Vervielfältigung für schulische Zwecke erlaubt.

#### Vorweg

#### Die Klausur- oder Abituraufgabe

In Nordrhein-Westfalen gibt es seit 2007 das Zentralabitur.

Ein anwendungs-, handlungs-, praxis-, realitäts-, Schüler/innen-orientierter Analysisunterricht, der ernst gemeint ist, sollte bis in die Klausuren und in den Endpunkt Abiturprüfung hinein bemerkbar sein.


Statt einer üblichen Aufgabe (siehe Kasten 1) können die Schüler/innen mit Aufgaben umgehen wie im Kasten 3 oder 33. Beide Aufgaben habe ich gestellt. Für den Weg zur erfolgreichen Bearbeitung einer solchen Fragestellung gebe ich im Folgenden Tipps, Hinweise und stelle Materialien vor.

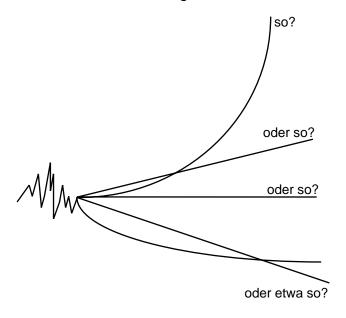
Gegeben sei die Funktionenschar  $f_t$  mit  $f_t$  (x) =  $\frac{10 \text{ x}}{\text{x}^2 + \text{t}^2}$ ,  $t \in \mathbb{R}^+$ .

- a) Untersuchen Sie die Funktionen ft auf Symmetrie, Polstellen, Verhalten für große und kleine x-Werte. Bestimmen Sie Nullstellen, Extrem- und Wendepunkte (die hinreichende Bedingung für die Existenz der Wendestelle braucht nicht geprüft werden).
- b) Notieren Sie die entsprechenden Punkte für f<sub>1</sub> und f<sub>2</sub> und skizzieren Sie die Grafen.
- c) Zeigen Sie: Alle Funktionsgrafen haben einen gemeinsamen Punkt.
- d) Bestimmen Sie die Funktionsvorschriften für die Ortskurven der Extrempunkte und der Wendepunkte. Skizzieren Sie sie in die Skizzen oben (s. b).
- e) Bestimmen Sie die Maßzahl der Fläche, die die Kurven zu f<sub>1</sub> und f<sub>2</sub> (s. b) einschließen.
- f) Erläutern Sie: Berechnet man das Integral in (zu Null) symmetrischen Grenzen, so ergibt sich Null.

Kasten 1: Standardaufgabe

(Beachten Sie bitte die Seite 47.)

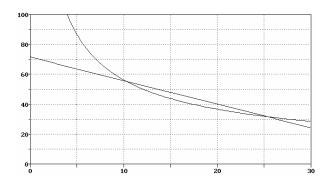



Wie lange die bekannten Chromvorräte noch reichen, hängt von der Nutzungsrate des Chroms ab. Bleibt der Verbrauch konstant (gestrichelte Linie), so ist noch für etwa 420 Jahre Chrom vorhanden. Wenn die Nutzung wie gegenwärtig um 2,6 Prozent jährlich anwächst, ist der Chromvorrat schon in 95 Jahren erschöpft; wenn man von den fünffachen Erzmengen ausgeht, in 154 Jahren. Auch wenn es gelänge, alles gebrauchte Chrom als Altmaterial wieder dem Neugebrauch zuzuführen, würde der exponentiell steigende Bedarf die Chromvorräte in 235 Jahren erschöpfen (horizontale Linie).

- a) Leiten Sie für die drei Jahresangaben in der Grafik, d. h. für exponentielle Zunahme (I), exponentielle Zunahme bei 5-facher Reserve (II), exponentielle Zunahme bei vollständigem Recycling (III), je eine allgemeine Berechnungsformel her für den Zeitraum T, für den die Reserven R noch reichen.
- b) Prüfen Sie die angegebenen Werte (Verbrauch 1970: 1,85 · 10<sup>6</sup> t).
- c) Für die Verdopplungszeit gilt:  $D = \ln 2/\ln a$  (mit a = 1 + p/100).
  - Zeigen Sie das.
  - Wie lange dauert es, bis sich der Verbrauch von Chrom verdoppelt hat?
- d) "Es wird innerhalb einer Verdopplungszeit soviel verbraucht wie in der gesamten Menschheitsgeschichte bisher."
  - Dehnen Sie 'die gesamte Menschheitsgeschichte' im mathematischen Modell großzügig bis -∞ aus. Notieren Sie die Behauptung des Satzes dann mit mathematischen Symbolen.
  - Bestätigen Sie den Satz.

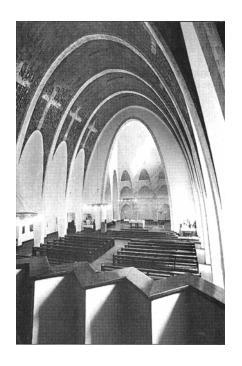
Kasten 3: Meadows-Aufgabe

Benötigen Sie Anregungen für eine Neuausrichtung Ihres Analysisunterrichts?


Suchen Sie nach tragfähigen Anwendungsbeispielen für die Differenzialrechnung?



Brauchen Sie Themenstellungen, die Sie Ihren Schüler/innen als brauchbare und interessante Facharbeiten empfehlen können?


Suchen Sie für sich selbst nach einem Konzept für Ihren Unterricht, das Sie glaubwürdig vor Ihren Schüler/innen vertreten können?

## Dann greifen Sie zu.



Wollen Sie Ihre Schüler/innen mit brauchbaren, glaubwürdigen oder witzigen Nutzungen im Analysisunterricht konfrontieren?

Sind Sie auf der Suche nach Materialien, die dem Mathematikunterricht tragfähig eine alltagstaugliche Basis geben?



ISBN 978-3-930197-57-6



€ 12,50